PTSDgene database


I. Data summary

Through full-text reading of 127 papers and carefully data extraction, PTSDgene provides multitype genetic factors. As of Jan. 1, 2018, there is neither copy number variation (CNV) nor chromosomal region reported for PTSD. All statistical information of PTSD related genetic factors are in Table 1.

Table 1 PTSDgene data content and statistics as of 01 Jan. 2018

II. Data collection

1 Literature search

For PubMed:

((("posttraumatic stress disorder"[Title/Abstract] OR "post-traumatic stress disorder"[Title/Abstract] OR PTSD[Title/Abstract] OR "delayed psychogenic reaction"[Title/Abstract]) AND (polymorphism[Title/Abstract] OR SNP[Title/Abstract] OR haplotype[Title/Abstract] OR interaction [Title/Abstract] OR variant[Title/Abstract] OR variation[Title/Abstract] OR mutation[Title/Abstract] OR CNV[Title/Abstract] OR "copy number variation"[Title/Abstract] OR repeats[Title/Abstract] OR deletion[Title/Abstract] OR duplication[Title/Abstract] OR (gene[Title/Abstract] OR locus[Title/Abstract] OR loci[Title/Abstract] OR chromosome[Title/Abstract] OR genetic[Title/Abstract] OR genome[Title/Abstract] OR genomic[Title/Abstract])) AND (linkage[Title/Abstract] OR associat*[Title/Abstract] OR meta-analysis[Title/Abstract] OR gene x environment[Title/Abstract] OR gene-environment[Title/Abstract])))

For PsychINFO and PsychArticles:
(Any Field ("posttraumatic stress disorder" OR "post-traumatic stress disorder" OR PTSD OR "delayed psychogenic reaction") AND Any Field : ("polymorphism" OR "SNP" OR "haplotype" OR "interaction" OR "variant" OR "variation" OR "mutation" OR "CNV" OR "copy number variation" OR " repeats" OR " deletion" OR " duplication" OR "gene" OR "locus" OR "loci" OR "chromosome" OR "genetic" OR "genome" OR "genomic") AND Any Field : ("linkage" OR "associat*" OR "meta-analysis" OR "gene x environment" OR "gene-environment") AND Language: English AND Document Type: Journal Article)
It resulted in 1762 English publications as of March 15, 2016.

2. Inclusion criteria

3. Data extraction

III. Data analysis

1. Annotation
1.1 Linkage disequilibrium analysis and functional annotation for SNP

1.2 Annotation for gene

2. Analysis for signficant genes
2.1 Pathway enrichment analysis

2.1 Protein-protein interaction analysis

VI. Data update

During the database update process, fewer new documents were added in each quarter, so we will update the database every six months or one year.

1. Data statistics for V2018q1 (till Jan 1 2018)
1.1 Update information

V1 Stage (2016/03/15-2018/01/01): Records identified from PubMed, PsycINOF and PsycARTICLES are 339 in total. There are 194 records left after removing duplicates.

1.2 Pathway enrichment analysis for significant gene

Pathway enrichment analysis was reanalyzed using DAVID 6.8, and the results have been re-uploaded to the database.

1.3 Protein-protein interaction analysis for significant gene

Protein-protein interaction analysis was analyzed using GeneMANIA ( online, which is a flexible user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. The results have been re-uploaded to the database.

1. Zhang, L., et al., ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res, 2012. 40(Database issue): p. D1003-9.
2. Chang, S.H., et al., BDgene: a genetic database for bipolar disorder and its overlap with schizophrenia and major depressive disorder. Biol Psychiatry, 2013. 74(10): p. 727-33.
3. Li, Y., et al., Genotype imputation. Annu Rev Genomics Hum Genet, 2009. 10: p. 387-406.
4. Abecasis, G.R., et al., An integrated map of genetic variation from 1,092 human genomes. Nature, 2012. 491(7422): p. 56-65.
5. Kersey, P.J., et al., Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res, 2014. 42(1): p. D546-52.
6. Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 2009. 4(7): p. 1073-81.
7. Ivan A Adzhubei, S.S., Leonid Peshkin , Vasily E Ramensky , Anna Gerasimova , Peer Bork , Alexey S Kondrashov, Shamil R Sunyaev, A method and server for predicting damaging missense mutations. Nature Methods, 2010. 7: p. 248–249.
8. Guo, L., et al., rVarBase: an updated database for regulatory features of human variants. Nucleic Acids Res, 2016. 44(D1): p. D888-93.
9. Roadmap Epigenomics, C., et al., Integrative analysis of 111 reference human epigenomes. Nature, 2015. 518(7539): p. 317-30.
10. Psych, E.C., et al., The PsychENCODE project. Nat Neurosci, 2015. 18(12): p. 1707-12.
11. Consortium, G.T., Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science, 2015. 348(6235): p. 648-60.
12. Gamazon, E.R., et al., SCAN: SNP and copy number annotation. Bioinformatics, 2010. 26(2): p. 259-62.
13. Xia, K., et al., seeQTL: a searchable database for human eQTLs. Bioinformatics, 2012. 28(3): p. 451-2.
14. Ding, J., et al., Gene expression in skin and lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL signals. Am J Hum Genet, 2010. 87(6): p. 779-89.
15. Ramasamy, A., et al., Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci, 2014. 17(10): p. 1418-28.
16. Liang, L., et al., A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res, 2013. 23(4): p. 716-26.
17. Wright, F.A., et al., Heritability and genomics of gene expression in peripheral blood. Nat Genet, 2014. 46(5): p. 430-7.
18. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
19. Kanehisa, M., et al., From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006. 34(Database issue): p. D354-7.
20. Cowley, M.J., et al., PINA v2.0: mining interactome modules. Nucleic Acids Res, 2012. 40(Database issue): p. D862-5.
21. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
22. Huang da, W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13.
23. Oti, M. and H.G. Brunner, The modular nature of genetic diseases. Clin Genet, 2007. 71(1): p. 1-11.
24. Oti, M., et al., Predicting disease genes using protein-protein interactions. J Med Genet, 2006. 43(8): p. 691-8.